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Abstract

Addition formulas for theta functions of arbitrary order are shown and applied to the theoretical
understanding of the fractional quantum Hall effect in a multi-layer two-dimensional many-electron
system under periodic conditions.
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1. Introduction

As is well known, classical addition formulas for theta functions are formulas of degree
2. In this paper we prove addition formulas of arbitrary degree for theta functions. The
explicit generalized addition formulas are stated’ ireorem 2.6andProposition 2.7and
the main ingredients in the proof are the cube theorem and the isogeny theorem of Mumford
[1,3].

We apply these results to offer a formulation of the fractional quantum Hall effect in a
multi-layer many-electron system and possible generalizations. In the study of the ordinary
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quantum Hall effect under periodic conditigd$, the basic geometric objectis an algebraic
torus

C
r=_—_,
Z+1tZ

and study of the isogeny
ON - >N EN, ox1, ..., xy) =1+ -+ XN, X1 —X2,..., X1 — XN)

determines the change of coordinates from one-particle to center-of-mass and relative co-
ordinates in the space of wave functions of the system. The change from one-particle
coordinates(xy, ..., xy), to center-of-mass and relative coordinates+ - - - + xy, x1 —
x2,...,x1 — xp) is crucial in the definition of the Laughlin wave function describing the
ground state of the FQHE on the complex plane. On the algebraic tBruhjs change
of coordinates becomes the isogeny mentioned above. In the second quantization formal-
ism, to extend the Laughlin variational principle for the fractional quantum Hall effect to
the periodic case thus requires the use of generalized addition formulas for elliptic theta
functions, seé4].

The goal of this work is to generalize this construction to an arbitrary algebraic torus
of dimensiong X = C/(Z8 + tZ¢) (wheretr = jj is a complexg x g symmetric matrix
with the imaginary part positive definite). From a physical point of view, this means that
we are considering a system of many electrons moving two-dimensional layers with
different periodic conditions defined by the period matijx As in our earlier papef],
we are naturally lead to study the isogenies

on XV — xV, ex1, .., xN) = X1+ F XN, X1 — X2, ..., X1 — XN).

The behavior of the global sections of some line bundles &eunder the isogenyy will
determine the vector space of wave functions of the system of electrons under the generalized
periodic conditions. This behavior and the link between wave functions depending either
on(xg,...,xy)0or (xg+---+xy,x1 — x2,...,x1 — xy) is completely described by the
generalized addition formulas. We thus obtain a complete description of the space of wave
functions of the FQH effect in a multi-layer two-dimensional electron system. In fact, in
the real physical situation it suffices to consider a diagonal period mattirless tunnel
effects between different layers are taken into accountisje

Having done this, we also consider the Fourier—Mukai transform of some line bundles over
X" determined by the generalized Haldane—Rezayi wave functions and the semi-stability of
these transforms. We show how the slope of these bundles is related to the Hall conductivity,
which therefore appears as a topological invariant. There is an isomorphism between the
Fourier—Mukai transforms for any number of electravsnd, thus, the Hall conductivity
depends only on the center-of-mass dynamics characterized by the Haldane—Rezayi states.

The organization of the paper is as followsSaction 2we show the main theorems and
establish the generalized addition formulas for Abelian varietieSeletion 3 the vector
spaces for the quantum ground states are constructed in terms of higher order odd theta
functions.Section 4is devoted to studying the Fourier—Mukai transform of the line bundles
over XV related to the quantum vector spacesSkuction 5 all these developments are
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applied to the analysis of the fractional quantum Hall effect in multi-layer periodic electron
systems. Finally, irBection 6a comparison with the physics literature is offered and some
obscure points are clarified.

2. Generalized addition formulas for Abelian varieties

Let X be an Abelian variety of dimensignover the fieldC of complex numbers. Let us
define the following family of morphisms:

N

M, mj, s X x - x X = X, M(x1,...,xy) =x14+ -+ xpn,
mij(x1, - .., XN) = X; + xj, sij(xa, ..., XN) = X — xj,

pii Xx---xX—>X

will be the natural projections.

Theorem 2.1 (Generalized cube theoremijor any symmetric invertible sheaf L on X one
has a natural isomorphism

N
ML~ <‘®4mi’§L> ® (_®1p;“L®‘N+2) :
i=

1<j
Proof. This follows from the cube theorefii], and induction oven. O

Corollary 2.2. Forany symmetricinvertible sheaf L over X, one has a naturalisomorphism
ML ® <‘®.si*j‘L) ~piL®N @ ... ® py LoV,
i<j
Proof. By Theorem 2.Jone has

N
ML ® <®si’§L) ~® (miTL@)Sij) ® <®p:‘L®_N+2> .
<] i<j i=1

i<j

Let us denote byj : X x ---¥ x X — X x X the projection on the factoi, j) and by
m:X x X - X (i =1, 2) the natural projections. One has

mfjfL ® SafL ~ pi’]f(g*(nIL Q@ myL)) =~ p;‘j‘(nIL®2 ® N§L®2),
where¢ : X x X — X x X is the morphismé(x, y) = (x + y, x — y).
We therefore have

N
wis(ose)= e rui? e e (&)
i<j i<j i=1

N
~ @ (pfL¥? @ piL®?) ® <‘®lp;kL®N+2>
1=

<j

N
~ @ prL®N. O
®

1
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Let us consider the morphism of Abelian varieties:

-1
%—l—l)(xl,...,x;v)

— (x1+ -+ Xy, X1 — X2, ..., XN_1 — XN).

EN:XX~1Y~XX—>XX~':~XX<F=

By Corollary 2.2one has an isomorphism
EV(PIL® - @ piL)~ ML ® (_®_s;;L> ~pil®N @ ... @ pyL®Y,
i<j
which induces a homomorphism between the vector spaces of global sections:

g HX. L) ®- @ HOUX, L) » HOX, L®Y) ® - - @ HO(X, L®Y).

For applications to the study of the quantum Hall effect under periodic conditions, it is very
important to compute explicitly the homomorphigip (se€f4] andSection 6of this paper).
Observe that the kernel gf; is A(Xy), whereX y is the N-torsion subgroup oK and
A X — X x ---N x X is the diagonal immersion.
The morphisngy factors as follows:

Z=Xx N x XBy = Z/JAXN) S X x " x X, Ey=iodn.
Letussell = (p]L ® - ® prL).
One has thap} £, = M*L ® <®i<js;§L) = My.
We can now consider the morphism
N Z— Z, o(x1, ..., xn) = (X214 + XN, X1 — X2, ..., X1 — XN),
and define an invertible she®&fy on Z by
Ry =(PiL®--- @ pyL) ® (®sL).
One has a commutative diagram

§ r
Z—"xx"xX

A

,,,,,,,,,,

such that

JTI NR/\/Zﬁ and f;kVﬁ:(pTVRNZMN.

.....

But ¢ is an isogeny of kerneh (X ) and the problem of computing the homomorphism
& is reduced to computing the homomorphism

o%  H%Z, Ry) — HY(Z, My).
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To compute this homomorphism, we can apply the Mumford theory of algebraic theta
functions[2].

To make explicit computations, let us fix a principal polarization (pspon the Abelian
variety X, and assume thdt = Ox (m®); then, one has that! ~ ®;' ; p7 Ox (NM®).

For any invertible sheaf on X, let us denote bX(F) the subgroup ok which leaves
Finvariant under translationX(F) = x € X : Ty F >~ F) and byG(F) the theta-group
of F.

In our case, one has

K(L) = X,, = subgroup ofn-torsion points ofX,
K(L®V) = Xym and K(L) = N - K(L®") € Xnm.

The isomorphismp*Ry >~ My implies that

N
K(My)=K(L®) x - x K(L®N)
N N
=XNmX - X XNmD K(RN) D X X -+ x Xy,

For any invertible sheaf = Ox (D) on an Abelian varietyx of dimensiong, let us denote
by deg L) the humbeDs.

Proposition 2.3.

|K(Ry)| = N*N-242N9 - degRy = (N NN ~25mNe,

Proof. Observe that kepy = A(Xy) >~ Xn. One then has that
degpi Ry = degpl degRy = N¥Ry,

and
degyly Ry = (Ng) NNImNS,

Therefore: de®Ry = (N NN ~28,N9, O
The structure of the groufi (Ry) is given by the following theorem.

Theorem 2.4. K(Ry) is the subgroup of pointgy (p) = (x1+---+xn, X1 —X2, ..., X1 —
xy) € Xx---NxXsuchthatp = (x1,..., xn) € XnmX - - -V x Xymandxi+---+xy €
Xm.
In particular, K(Ry) has subgroups isomorphic %y x - - -V x Xy given by
N
X X - x X; —> K(RnN), (x1, ..., xn) = (X1, ..., xN)

(with respect to the natural immersioty, = N - Xnm C Xmn) and

N-2 N
Xyx - xXy—> K(RNy) —> X x - x X,

(x2, .. °3xN71) - (07 X2, .0y TXN-1, X2 + - +XN71).
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Proof. Let X = Pic°(X) be the dual Abelian variety. From the exact sequence

N N
0—>XN£>XX~~~XX@>XX~~XX—>O,
one deduces the existence of the following dual exact sequence

A A A N ~AON A N ~
0—- Xy—=>Xx- - xX—=>Xx---xX—>0,

which means that given a poipt= (x1, ..., xy) € K(My), one has
Ty W RNVORY T piM® -+ ® pyM

for a certain invertible shea¥/ of degree zero oiX. By restricting this equality t&X x
{e} x - --{e} we computeM and obtain the following isomorphism:

T RN @ RY T =PIy LOLTT) @ @ (T gy LOLET.

Then,T¢;k Ry ~ Ry ifandonlyifx; +---+xy € X,,. The rest of the theorem follows
easily from this result. O

Remark 2.5. We have constructed two subgrougs, x - - -V x X,, andXy x-- -V 2x Xy
of K(Ry). Thusif(m, N) = 1, a general element &f (R y) has the form

(Y1, Y2 — X2, ..., YN-1 — XN_1, YN + X2+ -+ xn_1),

where(y1, ..., yv) € XN and(xz, ..., xy_1 € XN ).

Let us fix compatible theta-structurg® on L and L®". These theta-structures induce
compatible theta-structures @y and My and decompositions

K(L)~ A(L) x B(L), A(L)~ (Z/mZ)8, K(L®N) ~ A(L®N) x B(L®V),
A(L®N) ~ (Z/mNZ)E,  K(My) ~ ALPMYN x B(LEV)N,
K(Ry) ~ A(Rn) x B(Ry),

whereB(Ry) C B(L®M)N, and byTheorem 2.4ne has
BN ¢ B(Ry).  m-BLEV)N"2C B(Ry).,  BWL)N =N-BL)N
in such a way thaB(Ry) is the subgroup oB(L®N)N generated by: - B(L®N)¥N~2 and

N - B(L®M)N,
We have natural isomorphismiz]

H°(X, L) = V,, = {functionsB(L) — C},
HO(X, L®N) = Vym = {functionsB(LEN) — C}.
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For eachi € B(L), lets,; be the global section df defined by the characteristic function
of d, and for eaclb € B(L®V) let 8, be the corresponding global section/cgf? .

Observe that’®(Z, Ry) is aC-vector space of dimensiaviV =2¢mNdandHO(Z, My)
is aC-vector space of dimensiaWN9,N9. The following result give us an explicit descrip-
tion of the homomorphism%, : H%(Z, Ry) — H%(Z, My).

Theorem 2.6. Let us assume that L and®" have compatible theta-structures satisfying
the above conditions. For eache B(Ry) one has

NG =AY ba.
beB(My)
fby=d

wherex € C is a constant which we will assume to be equdl to
Proof. This follows from the isogeny theoref,3]. O

This result allow us to give more explicit expressionsdir
Givend = (d1, ...,dy,) € N - BL®N)N = [(Z/mZ)¢]N C B(Ry), let us denote by,
the element

80 =584, ®  ®8ay | ® si8a-a; | € HY(Z. Ry),
i>j
j=2
and for eacth = (0, —ha, ..., —hy_1,ho+---+hn_1) € [(Z/NZ)$]N=2 ¢ B(Ry) we

denote by, the corresponding global section®fy.
With these notations one has the following proposition.

Proposition 2.7.

L ohGa)=0ldi)Gc1+ - +xn) [ [ 0ld]xa — xp] [0ldi — dj]xi — x))

j=2 i>j

j=2

=r Y O[b1](x0)bb2)(x2) - - O[bN] (xn).
bie B(L®N)
bit-+by=d1
b1—bo=d>
bi—by=dy

0[b:](x;) being the global section di®" defined by, (in the ith component o) and
0[d;](z) the global section of L defined By,.
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2. on@p)=0p(x1+ -+ xN, X1 —X2,..., X1 — XN)
=) > 0[b1] (x1)60[b2] (x2) - - - O[N] (xn)
bie B(L®N)
by+---+by=0
by1—by=—hy

bi—by-_1=—hNn—-1
bi—bn=ho++hy-1

=i Y O[bal(x)0[ba + 2] (x2) - - O[bw, + hy-1]

(b1,...,bN)
X (xny-1)0[by — hp — -+ - — hy_1](xn),
where(by, ..., by) € ker(B(My)) and in both formulae. is a constant independent of d
and h
Proof. This follows easily fromTrheorem 2.@and the description ok (R y). O

Remark 2.8. In the casdm, N) = 1, a general element (R y) takes the form
d=(d1,d2—h2,...,dy-1—hy-1,dn +h2+ -+ hn-1),

where(dy, ..., dy) € B(L)N and(ha, ..., hy_1) € [(Z/NZ)8]¥~2, and the general addi-
tion formula is

ON ) =Op(x1+ -+ + XN, X1 — X2, ..., X1 — XN)
=X > 6[b1] (x1)6[b2] (x2) - - - O[N] (xw).
bie B(L®N)
by+-+by=d1
b1—bo=do—h>

bi—by-_1=dy-1—hy-1V
bi—by=dn+ho++hy_1

Remark 2.9. We have explicitly computed the homomorphism of vector spages
HO(Z,Ry) — HO(Z, My). If we wish to computé?, : HO(X", £) — H°(Z, My), let
us note that we have the commutative diagram

e
HYXT.L) ——— H°(Z.Mn)

HO(Y, L), ) ~ HYZ,Ry)
and we have

KWL)~X., KL)NYCKKL,~KRy), KL NY=Xpyx-"x X
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From these identities one can easily prove that the vector subigdi%(Xr, L) C
HO(Z, My) can be identified with the subspace generated by the global sefbip0)}
defined in 2.7(a).

3. Vector spaces of higher order odd theta functions

We shall apply the results of the first section to compute some vector spaces of theta
functions which are relevant in the study of the fractional quantum Hall effect (for a similar
discussion for elliptic curves, sé¢4]).

Following the same notations as in the previous section, let us set an invertible sheaf
L,, = Ox(m®) on the principally polarized Abelian variety, ®) of dimensiong.

Letus assume that= mNand letL; be the invertible shed?x (k®);onX x-. "x X = Z
we consider the invertible sheaf

My =piLi® - ® PyLi ~ piL?V ® --- @ PRLEN.
Let us define the vector subspagg(N) c H%(Z, My) by the following conditions:

sis invariant with respect to the action of tivetorsion subgroup
s € Ex(N) & A(Xy) C Zandisodd with respectto the permutations
actingonH%(Z, My) = HO(X, L)) @ --- ® HO(X, Ly).

Let us setV,, = HO(X, L,,) andV;, = H%(X, Ly). By the very definition, one has that
N N
Ek(mz/\vkm|m<p*N CVi® - ® W,

whereg%, : HY(Z, Ry) — H°(Z, My) = Vi ®- - -¥ ® Vj is the addition homomorphism
defined inSection 6

Note that the factorizatiop}, = 71 n o &y implies that

,,,,,

N
EQ(N) = \ Vi nIm&y < Ex(W) < VEN.

LetEii c H%(Z, Ry) be the subspaces of eigenvectors of the automorphis#?an, R v)
induced byo; : XV — XN, o;(x1, ..., xn) = (X1, ..., —Xi, ..., XN).

Proposition 3.1. There exists a natural isomorphism
Ex(N) ~ gy HY(Z, Ry)-.

H°(Z, Ry)_ being the vector subspace HP(Z, Ry) defined as the intersection of the
vector subspaces;” withi > 1.

Proof. This is easy from the equalitify (N) = /\N Vi Nnim gy d

We can give a more explicit description of the subspﬁge\f).
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From Remark 2.9, it follows that I, is the vector subspace #f°(Z, Ry) described
in Proposition 2.7

Let V= be the subspaces of eigenvector¥gfwith respect to the action of the involution
[-1]x : X - X([—1]x(x) = —x). Then, we have the following proposition.

Proposition 3.2.
_ N-1 _
EXN) = (Vu @V, @ 2@ V).

Proof. One has only to observe that kY is naturally identified withV,, ® ---¥
® Vin- O

In our interpretation of the FQHE, the vector subspaﬂfeN) is the space of wave
functions of a system a¥ electrons.

4, Poincaré bundles and Fourier—Mukai transforms

Let (X, ®) be ap.p.a.v. of dimensignandX its dual Abelian variety. LeP be a Poincaré
bundle onX x X; Pis the line bundle orX x X given by the universal property &f.

Given an invertible sheaf,, ~ Ox(m®) on X (with m > 0), we can construct the
invertible sheaf orX x X:

wherery : X x X — X andry : X x X — X are the natural projections.
The Fourier—Mukai transform df,,, is (se€[5,6] for details)

S(Ly) = n&*(n}‘(L QP = nk*ﬁm.

It is well known thatS(L,,) is a rankm?¢ vector bundle orX.

We can interpret,, as the family of line bundles ovéf, parameterized by, which are
algebraically equivalent td,, .

If we wish to generalize the results 8&ction 1to the case of a “variable line bundle
L,,, we must perform the base chankjex X — Xand replacd.,, by L,,.

We can then define ol x X the following line bundles:

-/\f;(N = M*Lm ® <®§|T£m> , 73; = (I_ﬁﬁm Q- Q® 1_7N£m) ® ‘®‘§ﬁ[’m ’
i<j i>j

j=2

wherel andsjj are the morphismg x X — X x X definedbyM = M x1dy, 5j = sij x1d
andp; : Z x X — X x X are the natural projections.
Defininggy : Z x X — Z x X as¢y = ¢y x lds, we have that

PNRy = My,
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and Corollary 2.2 implies that
VRN = My = piLEN @ - @ pyLEN @ npF

for some invertible sheaf on X.
Bearing in mind the applications to the FQHE, we are mainly interested in the bundles

W (L) =75 (M*Ly) = 75 (M* (T L ® P)),

which describe the dynamics of the center-of-mass.
Our main result on the structure Bty (L,,) is as follows.

Theorem 4.1. For everyN > Oandm > 0, Wy(L,,) are vector pundles oveX of rank
m$. These vector bundles are semi-stable with respect to thespipduced by® on X.

Moreover for everyN > 2, there exist natural isomorphianN(Lm); Wy_1(Lnm).

Proof. Proof of the existence of isomorphisrﬁsv(Lm)1> Wy_1(L,,) is the same as the
proof given in the case of elliptic curves.

Therefore, the proof of the theorem is reduced to the ca¥@ ¢f,,,) which is precisely
the Fourier—Mukai transform df,,,, which is well known to be a vector bundle of ramk
(form > 0).

We only have to prove the semi-stability B (L,,) with respect ta®.

Let us compute the slope &f1(L,,): we consider the isogeny;,, : X — X of degree
m?¢ defined by

0L, =TiLn ® LY,
T, : X — X being the translation hy. It is known[7] that
05 Wi(Ly) = HO(X, L) ® L%
Let us sel0Dx (D) = detW1(L,,); one has
¢"(D - 0°71) = degy) deg D) = m* deg D),
and
¢'(D- 05 = 9" D - (¢p* O = (=m* O m*O)s Tt = —m* g,
Then, degD) = —m8 g

degWi(Ln) &
rk Wi(Ly) Coom’

Let us recall that from the compu:[ations of Lange and Birkentj@kene easily deduces
that given an invertible shed# on X, one he}s thaty(M) - @1 = g, . ¢ for some integer
c. Thus, in the definition of semi-stability aX, with respect to the polarizatiaf, we can
replace the degreq (M) - ®¢~1, of an invertible sheaM, by the reduced degree
.68-1
rdegM) — %’

8!

n(Wi(Lp)) =
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and the reduced slope
c1(M) - &L
g - kM~

Let F € Wi(L,,) be a subbundle of rank< m8 and reduced degreeleq F) = d. One
has to show that

wr(M) =

d 1
wr(F) == <y (Wi(Ly)) = ——.
r m

But it is known that to prove the semi-stability condition % (L,,) it suffices to prove
that it is satisfied by the subbundles of £k 1; that is, we can assume that 1. In this
case, the inequality is equivalentdo< 0.

Let us take the pullback af < Wi(L,,) with respect to the isogenyy,,,

9f F Cor,«WiLm) ~ H'(X, L) @ L1,

andrdegyj F =m?d <rdegL$ ! =—m < 0. Then, one has that< 0. O

5. Fractional quantum Hall statesin multi-layer two-dimensional electron systems

For applications to the FQH effect, we shall apply the theory developed in previous
sections to the following situation.

Let us consider the formB = C/Z @ tZ defined byr € Hz (upper half-plane) and let
us denote by e E the origin of the group law of:. The natural polarization oA is given
by the invertible sheaDg (e).

For any positive integeg € Z, let us denote by, the Abelian variety

X;=Ex-' xE.

Let X, —% E be the natural projection into thith factor. One can define a p.®, on X,
as follows:

Ox(6) = 84 0x(e).

Let K be a symmetric, positive, integer-valuget ¢ matrix. This matrix defines an isogeny
K:E{=X—> E¢=X.

One can define a line bundlg, on X by
L = K*Ox(©).

We can apply the results &fections 1 and @ this sheaf.
Let N > O be an integer number,= (N(N — 1)/2) 4+ 1, andéy, ¢ the morphisms
defined inSection 1

N N N
Ev X x - x X~ENS X x-"x X, o X xS ox X = Xxox X
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OnZ = XV, one has the sheaf

Ry = (pilk ® - - ® pyLy) ® | ® sjLk |,
i>]

j=2
and isomorphisms
* ook * N * 7y QN
3% _®1PiLK ~oyRy > _®1piLK ~ My(K).
= 1=
Analogous tdSection 2 for each matrixk we can define the vector subspatg(N) C
HY%(Z, My (K)) which will be identified with the Hilbert space of our problem

sis invariant with respect to the action of the subgroup
se€ Ex(N) & A(Xy) C Zandis odd with respectto the permutations
acting onH%(Z, My (K)=H°(X, L") ® - -- ® HO(X, LZY).

Also one has that

N
Ex(N) = /\ H°(X, L") nim .

Analogous tSection 2ve can also define the subspak(N) = AV HO(X, LEY)NIm £r.
Let us denote a point ot by (x1, ..., xy) andx; = (£, ..., t;) € E8 = X.
The explicit computations can be performed along the lines of Munifh&].
Note that the kernel of the isogeiy: X — X can be identified with the finite subgroup

Xk ~ 7Z8/KZ8 x 78 K75,

The order of this group isX x| = |detK |2 andH%(X, L) is aC-vector space of dimension
|detK|. Obviously, one has

K(Lx) = Xk € K(LEM), N-K(LEY) = K(Lk).

Letus setV = HO(X, Lg) andVx = HO(X, L%N). One has the analogous results of those
proved inSections 2 and and

_ N-1
Ex(N) = gy HYZ, Ry)-,  Ex(N)=¢jy(VOV ®--®V.).

Moreover, giverd = (du, ...,dy) € N - B(Lx)N = [Z8/KZ8]N < B(Ry), let us denote
by 8, the element

8¢ =084 ® - ®8ay ® | ® Sjda—a; | € H%(Z, Ry).
i>j

Jj=2
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It follows that the vector subspad.é((N) is generated by the sectiop§ (6;,) and one has
the identity

on(8a) =6lda)(xr + - +xw) [ [ 111 — xp [ [0l — dj1xi — x))

Jjz2 i>j
jz2
=r Y 60lb](xn)6lb2l (x2) - - 6[bN] (xn), @
by+-+by=dy
b1—bo=d>
b1—by=dy
where(xy, ..., xy) € X x ---N x X = E9N thatis,x; = (zi1, ..., zig) € E®.
Observe that

Z8/KTE ~ T/mZ & - ® L/n,L

for some integersy, ..., n, such that dek = ny, ..., ng.
Then, inthe above statemedts . . ., dy are elements of the grofy m1Z®- - -®Z/nZ
(once one has fixed the corresponding theta-structures).

6. Filling factorsand Hall conductivity

In a multi-layer many-electron system where the fractional quantum Hall effect is ob-
served, the ground state is a quantum fluid with several possible topological ord¢#3; see
The different phases are characterized bygtheg matrix

2p+1 2p 2p
2p 2p+1 --. 2p
K= ’
2p 2p e 2p+1

wherep is an integer greater than zero anthe number of layers.
The ground state wave function

N 8 g8 N
7 2p+1 by2 2
V=TI [1_[&?—4) S (C ) ”} exp[—zzlz?l }
i,j=1La=1 a<b a=1i=1
i<j

is the generalization of the Laughlin state to the case in which each layer is isomorphic
to C; here,z{ is theith particle position in theith layer, and we assume that there are
particles per layer, so that the total number of particlegis= gN.

We focus on this problem when each electron moves on a torus; the one-patrticle config-
uration space is the elliptic curvé = C/Z + tZ of the previous sections. The modular
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parametef., €’ /L1 encodes the periodicities of the basic lattice, which is the same for every
layer. A constant magnetic fiell allows for a well-behaved quantum system, compatible
with the lattice and the order “meant” by the matix if and only if

@2p+1N 2pN .-~ 2pN

o 2p 2p+1 -~ 2p eB , 2m|detKq]

1= : : : ’ he T Imt
2p 2p - 2p+1

Here,e, h andc are, respectively, the electron charge, the Planck constant and the speed of
light in vacuum. The quantum space of one-particle states is the space of sections of the
line bundleLg, = Iqexg(@) and the first Landau level corresponds to the subspace of
holomorphic section&®(X,, Lx,).

There is a many-electron wave function proposed by Haldane and R&@dll]as the
ground state for the quantum Hall fluid in a periodic lattice. Both the HR wave function and
its generalization to a multi-layer are of Laughlin type and the framework for the mathe-
matical understanding of such complex quantum states is provided by the developments set
forth before in this paper. We start by noticing that the isomorphism established at the end
of Section 4now reads

Z8/KZ8 ~ 7)(20p+ VZ @1 1d--- D 1,

i.e.n1 = (20p+1),n2 = n3 =--- = ngy = 1 because these are the eigenvalues okthe
matrix.

The center-of-mass dynamics and the relative motion of each pair of particles produce
contributions that factorize in the ground state wave function. In a basig in which K
is diagonal:

1. The center-of-mass wave function is a theta functiopwariables that we write follow-
ing the conventions of Ref12] in order to translate the developments of the previous
sections to the notation used in the physics literature:

—1-
- dlKD e1 o N . . .
Fem(X) = © 5 (KpX|Kpr), X=x1+x2+4+--+xn,

X is the CM coordinateK p is a diagonal matrix such that d& = detK (we have
chosenk p,, = 2gp+ 1) and the vector of component#; is (1,0, ..., 0).

This expression for the center-of-mass wave function is exactly the sath Hs1 +
x2 + -+ - 4+ xp) in the previous section and, undoing the diagonalization, one obtains

- K& -
Fem(Z2) = 6 5 (KZ|K7),

whereZ = 71 + 25 + - - - + zy is the CM coordinate in a basis af,, wherek is not
diagonal, an@& € Z8/KZ8. This is the form in which it appears in the physics literature.
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2. The factor in the ground state wave function due to relative motion has the form: if
Xij = X — X},

. dj Kp“e1 .
FGp=[]e-| " . (K pXij| K p7),
i<j
di =d7 —dy, i=2 dj=d;, i=1 dy =12,...,9p

Fermi statistics requires the use of anti-symmetric function ir> —Xxij

di Kp'er ;
O_ . (KpXxij|KpT)
1 | dikpten | —di Kpter |
=5 ¢ 5 (KpXxjj|Kpt) — © 5 (KpXxij|KpT)

Nevertheless, the ground state wave function

- . 1 - -
¥ = Fem(X)F: () expl =7 3 (ImE)(m ) ¢

apart from the non-analytic exponential factor, consists of terms of the form of the
left-hand member of formulél).

Therefore;/r can also be expressed as a product of theta functions if) treiables
with characteristic$; € Z/(20p+ 1)Z &1 1 - - - & 1 related to thek p matrix.

In the physics of the quantum Hall effect, the concept of the filling factor plays a
central role; if the magnetic field is strong enough to provide more states in the first
Landau level than electrons, it is defined as

_ number of particles
"~ number of states in the first LL

f

and the Hall conductivity is studied as a functionfof
If the number of states in the first LL is a finite number, dﬁfﬂ(Xg, Lg,) = det(K1)
in our case, therf is

_ Nr g
" detky  2gp+1°

SHR

Different integersg, and hence different values ¢fir, give rise to a hierarchy of ex-
perimentally observed topological orders: associated with ¢gamftthis form there are
quantum fluids that arise as ground states of the fractional quantum Hall effect without
periodic boundary conditions.

What we have shown by proving the generalized addition formulae for Abelian vari-
eties is that the fractional quantum Hall states in multi-layer two-dimensional electron
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systems are compatible with periodic lattices. Only the existence of such addition for-
mulae makes it possible to claim that the generalized Haldane—Rezayi wave function
implies fur = g/(2gp+ 1).

In fact, a further development remains to be made in order to make contact with the
HR ground state. We remark that there is a linear combination such that

9P _ d--‘K‘lél .
Y ddile- | 6D (KpXij| K p7)
di;:l
1 g 1
— @%ptl i of—xiln]]e f (¢ — x40,
2 a=2 2

appearing in the right-hand member odd theta functions of one variable. Undoing the
diagonalization oK, one easily checks that

8 1 1
H@sz i (Zf‘—z?lt)n@zl’ i ' =519
a=1 2 a<b | 2 ]
1 g 1]
~ o2p+l | 2 1 1 2
~ %P 2 o —xiln]]e 2 G = xgi
2 a=2 _?_

in such a way that the HR wave function can be traced back to the ahove

The generalized addition formulae are valid for any Abelian vatkgty= C¢/(Z% @
£22%), with £2 a matrix in the Siegel upper half-space of rank H,. In the application
to the quantum Hall effect, we have restricted ourselves to theXase E%, i.e. 2 =
tlgxg. There is no difficulty in extending the analysis to afdye H, that physically
corresponds to taking into account different periodicities for different layers and a tunnel
effect of weak amplitude between layers, a situation also considered by condensed matter
physicists, sefl 3]. Itis also convenient to make a brief comment on the second type of
addition formulasProposition 2.7from a physical point of view. Mathematically, the
origin of such addition formulas is the freedom of choosing the isogany Z — Z:
there are different projections froli, x -+ x Xgt0 Z = Xy x -V x X, (r =
[N(N —1)/2] + 1). Another choice ofr1 . n, for instance, would lead one to define

Pn(XL, o XN) = (X1 X2+ - XN, X2 — X1, X2 — X3, ..., X2 — XN),

i.e. it would singularize relative coordinates with respect to the second particle. In quan-
tum mechanics particles are indistinguishable and thus this possibility is physically
equivalent to choosingy based on the first particle coordinate. For this reason the
wave functions invariant under the second subgrouki@ ) do not enter in physical
arguments, and the ordering: j is chosen as the most natural one.

Further knowledge of the implications of the nature of the HR ground state wave
function can be obtained by means of a gedanken experimerif,4eeagnetic fluxes
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are induced by two solenoids per layer connected to the Hall device in such a way that
they are compatible with the electrons if

- [z hc. - [z hc.
Re e [o, —Cu], Imé e [o, —Cu]
e e
according to the Aharanov—Bohm effect. Heﬁds a complexg vector which encodes
the solenoid fluxes anél= (1, 1, ..., 1) is a real constant vector. The generalized HR

states are modified to
o S o o 1 . N
Vay[9] = Féh[(b; X]F[Xi] EXP{—Z Z[(Im XHtim Xi]} ,

RN dlelél —+ 3)1 N
F 4 X] =0 ng (KpXi|KpD),
2

whereg: = (e/fic)Reg andg, = (e/fic) Im ¢. The relative motion is not affected
but the contribution of the center-of-mass dynamics to the ground state is modified by
including the solenoid fluxes as characteristics of the theta function.

Mathematically, one mustinterprgts pointsinthe Jacobiéq, of X, andwe proceed
to identify the bundle wheref"l[&;] is defined as a section, using the developments of
Section 3 In fact, only the replacement df,, by Lk is necessary. We thus start by
constructing the invertible sheaf

a family of line bundles oveK parameterized by, and defining the Fourier—Mukai
transform ofL ¢

S(Lg) =mg (nxLk ® P) = ng Lk,
S(Lk) is a vector bundle ovek of rank (detk)$ whose fibers are vector spaces of

dimension(detK)8 whose bases are provided by the basi8t X, L), g Taking
this into account, one easily recognizes that °

s = F& [ X1F,[%]
is a holomorphic section in the bundle
VLS Ve =%
MN =M LK ® (@S”EK)
1<j

defined in perfect analogy with the bundid y of Section 3 one merely replaces,,
by Lk.

We now focus on the center-of-mass dynamics. Taking direct image amounts to inte-
grate over the variables in the other factors and we find

d di 7 diro.
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which determines the contribution of the solenoid fluxes to the CM ground state wave
function; this is a holomorphic section in the Fourier—Mukai transform of the bundle
M*Lg

Wn(Lg) = 5 (M*Lg) = mz (M*(xxLg @ P)).

From Section 3we know thatWy (Lg) >~ Wy_1(Lk) and the slope and reduced slope
of Wi(Lg) are given by

_g(detK)*tar  gg g

detkr ~ detkr  HrMlo) =—qar

There is a novelty: the factgrappears due to the freedom of choosiigg 2- 1 as any
of the g eigenvalues oK.
The Hall conductivity of the system is expressed in perturbation theory by the Kubo—
Thouless formuldl2]
_ i er[&wdlﬁzwdn — (V2 Vay )],
2w rh =

n(Wi(Lg)) =

OH

wherer = detk, V, = 3/3¢, and(|) defines the.2-norm
(flg) = f@N dV0|X®Nf*(;Cl, X2, ..., xNn)g(X1, X2, ..., XN).
X

This formula can be interpreted as follows: from the seciih we obtain a connection,
for anyds,
o™ = =21y |V2y ) dga
in a certain line bundle oveX. The curvature
R0 = 27 dp1 A dg
is constant ork and thereforery is equal to its average valyey)

. e2 r . . . .
(on) = Lgr_ D UV Vo) — (Vo™ V)] = ngg —

The bundle is therefor®1 (L x) and the Hall conductivity is a topological invariant, the
reduced slope oW1 (L y)

oH = | (Wi(Lg))|.
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