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Abstract

Addition formulas for theta functions of arbitrary order are shown and applied to the theoretical
understanding of the fractional quantum Hall effect in a multi-layer two-dimensional many-electron
system under periodic conditions.
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1. Introduction

As is well known, classical addition formulas for theta functions are formulas of degree
2. In this paper we prove addition formulas of arbitrary degree for theta functions. The
explicit generalized addition formulas are stated inTheorem 2.6andProposition 2.7and
the main ingredients in the proof are the cube theorem and the isogeny theorem of Mumford
[1,3].

We apply these results to offer a formulation of the fractional quantum Hall effect in a
multi-layer many-electron system and possible generalizations. In the study of the ordinary
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quantum Hall effect under periodic conditions[4], the basic geometric object is an algebraic
torus

Σ = C
Z + τZ ,

and study of the isogeny

ϕN : ΣN → ΣN, ϕ(x1, . . . , xN) = (x1 + · · · + xN, x1 − x2, . . . , x1 − xN)
determines the change of coordinates from one-particle to center-of-mass and relative co-
ordinates in the space of wave functions of the system. The change from one-particle
coordinates,(x1, . . . , xN), to center-of-mass and relative coordinates,(x1 + · · ·+ xN, x1 −
x2, . . . , x1 − xN) is crucial in the definition of the Laughlin wave function describing the
ground state of the FQHE on the complex plane. On the algebraic torus,Σ, this change
of coordinates becomes the isogeny mentioned above. In the second quantization formal-
ism, to extend the Laughlin variational principle for the fractional quantum Hall effect to
the periodic case thus requires the use of generalized addition formulas for elliptic theta
functions, see[4].

The goal of this work is to generalize this construction to an arbitrary algebraic torus
of dimensiong X = C/(Zg + τZg) (whereτ = τij is a complexg × g symmetric matrix
with the imaginary part positive definite). From a physical point of view, this means that
we are considering a system of many electrons moving ong two-dimensional layers with
different periodic conditions defined by the period matrixτij . As in our earlier paper[4],
we are naturally lead to study the isogenies

ϕN : XN → XN, ϕ(x1, . . . , xN) = (x1 + · · · + xN, x1 − x2, . . . , x1 − xN).
The behavior of the global sections of some line bundles overXN under the isogenyϕN will
determine the vector space of wave functions of the system of electrons under the generalized
periodic conditions. This behavior and the link between wave functions depending either
on (x1, . . . , xN) or (x1 + · · · + xN, x1 − x2, . . . , x1 − xN) is completely described by the
generalized addition formulas. We thus obtain a complete description of the space of wave
functions of the FQH effect in a multi-layer two-dimensional electron system. In fact, in
the real physical situation it suffices to consider a diagonal period matrixτ, unless tunnel
effects between different layers are taken into account, see[13].

Having done this, we also consider the Fourier–Mukai transform of some line bundles over
XN determined by the generalized Haldane–Rezayi wave functions and the semi-stability of
these transforms. We show how the slope of these bundles is related to the Hall conductivity,
which therefore appears as a topological invariant. There is an isomorphism between the
Fourier–Mukai transforms for any number of electronsN and, thus, the Hall conductivity
depends only on the center-of-mass dynamics characterized by the Haldane–Rezayi states.

The organization of the paper is as follows. InSection 2, we show the main theorems and
establish the generalized addition formulas for Abelian varieties. InSection 3, the vector
spaces for the quantum ground states are constructed in terms of higher order odd theta
functions.Section 4is devoted to studying the Fourier–Mukai transform of the line bundles
overXN related to the quantum vector spaces. InSection 5, all these developments are
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applied to the analysis of the fractional quantum Hall effect in multi-layer periodic electron
systems. Finally, inSection 6a comparison with the physics literature is offered and some
obscure points are clarified.

2. Generalized addition formulas for Abelian varieties

LetX be an Abelian variety of dimensiong over the fieldC of complex numbers. Let us
define the following family of morphisms:

M,mij , sij : X× N· · · ×X→ X, M(x1, . . . , xN) = x1 + · · · + xN,
mij (x1, . . . , xN) = xi + xj, sij (x1, . . . , xN) = xi − xj,
pi : X× · · · ×X→ X

will be the natural projections.

Theorem 2.1 (Generalized cube theorem).For any symmetric invertible sheaf L on X one
has a natural isomorphism:

M∗L �
(

⊗
i<j
m∗

ijL

)
⊗

(
N⊗
i=1
p∗
i L

⊗−N+2
)
.

Proof. This follows from the cube theorem[1], and induction overN. �

Corollary 2.2. For any symmetric invertible sheaf L over X, one has a natural isomorphism:

M∗L⊗
(

⊗
i<j
s∗ijL

)
� p∗

1L
⊗N ⊗ · · · ⊗ p∗

NL
⊗N.

Proof. By Theorem 2.1one has

M∗L⊗
(

⊗
i<j
s∗ijL

)
� ⊗
i<j

(
m∗

ijL⊗ s∗ijL
)

⊗
(
N⊗
i=1
p∗
i L

⊗−N+2
)
.

Let us denote bypij : X× · · ·N × X → X× X the projection on the factors(i, j) and by
π : X×X→ X(i = 1,2) the natural projections. One has

m∗
ijL⊗ s∗ijL � p∗

ij (ξ
∗(π∗

1L⊗ π∗
2L)) � p∗

ij (π
∗
1L

⊗2 ⊗ π∗
2L

⊗2),

whereξ : X×X→ X×X is the morphism:ξ(x, y) = (x+ y, x− y).
We therefore have

M∗L⊗
(

⊗
i<j
s∗ijL

)
� ⊗
i<j
p∗

ij (π
∗
1L

⊗2 ⊗ π∗
2L

⊗2)⊗
(
N⊗
i=1
p∗
i L

⊗−N+2
)

� ⊗
i<j
(p∗
i L

⊗2 ⊗ p∗
jL

⊗2)⊗
(
N⊗
i=1
p∗
i L

⊗−N+2
)

� N⊗
i=1
p∗
i L

⊗N. �
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Let us consider the morphism of Abelian varieties:

ξN : X× N· · · ×X→X× r· · · ×X
(
r = N(N − 1)

2
+ 1

)
(x1, . . . , xN)

→ (x1 + · · · + xN, x1 − x2, . . . , xN−1 − xN).
By Corollary 2.2one has an isomorphism

ξ∗N(p
∗
1L⊗ · · · ⊗ p∗

r L) � M∗L⊗
(

⊗
i<j
s∗ijL

)
� p∗

1L
⊗N ⊗ · · · ⊗ p∗

NL
⊗N,

which induces a homomorphism between the vector spaces of global sections:

ξ∗N : H0(X,L)⊗ r· · · ⊗H0(X,L)→ H0(X,L⊗N)⊗ r· · · ⊗H0(X,L⊗N).

For applications to the study of the quantum Hall effect under periodic conditions, it is very
important to compute explicitly the homomorphismξ∗N (see[4] andSection 6of this paper).

Observe that the kernel ofξN is∆(XN), whereXN is theN-torsion subgroup ofX and
∆ : X ↪→ X× · · ·N ×X is the diagonal immersion.

The morphismξN factors as follows:

Z = X× N· · · ×XφN→Y = Z/∆(XN) i↪→X× r· · · ×X, ξN = i ◦ φN.
Let us setL = (p∗

1L⊗ · · ·r ⊗ p∗
r L).

One has thatφ∗
NL|Y = M∗L⊗

(
⊗i<js∗ijL

)
=MN .

We can now consider the morphism

ϕN : Z → Z, ϕ(x1, . . . , xN) = (x1 + · · · + xN, x1 − x2, . . . , x1 − xN),
and define an invertible sheafRN onZ by

RN = (p∗
1L⊗ · · · ⊗ p∗

NL)⊗ (⊗s∗ijL).
One has a commutative diagram

π1,...,N being the projection on theN first factors.π1,...,N induces an isomorphismY
∼→Z

such that

π∗
1,...,NRN � L and ξ∗NL = ϕ∗

NRN �MN.

But ϕN is an isogeny of kernel∆(XN) and the problem of computing the homomorphism
ξ∗N is reduced to computing the homomorphism

ϕ∗
N : H0(Z,RN)→ H0(Z,MN).
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To compute this homomorphism, we can apply the Mumford theory of algebraic theta
functions[2].

To make explicit computations, let us fix a principal polarization (p.p.)Θ on the Abelian
varietyX, and assume thatL = OX(mΘ); then, one has thatM � ⊗Ni=1p

∗
iOX(NmΘ).

For any invertible sheafF onX, let us denote byK(F) the subgroup ofX which leaves
F invariant under translations (K(F) = x ∈ X : T ∗

xF � F) and byG(F) the theta-group
of F.

In our case, one has

K(L) = Xm = subgroup ofm-torsion points ofX,

K(L⊗N) = XNm and K(L) = N ·K(L⊗N) ⊂ XNm.

The isomorphismϕ∗RN �MN implies that

K(MN)=K(L⊗N)× N· · · ×K(L⊗N)

=XNm × N· · · ×XNm ⊃ K(RN) ⊃ Xm × N· · · ×Xm.
For any invertible sheafL = OX(D) on an Abelian varietyX of dimensiong, let us denote
by deg(L) the numberDg.

Proposition 2.3.

|K(RN)| = N2(N−2)gm2Ng, degRN = (Ng)!N(N−2)gmNg.

Proof. Observe that kerϕN = ∆(XN) � XN . One then has that

degϕ∗
NRN = degϕ∗

N degRN = N2gRN,

and

degϕ∗
NRN = (Ng)!NNgmNg.

Therefore: degRN = (Ng)!N(N−2)gmNg. �

The structure of the groupK(RN) is given by the following theorem.

Theorem 2.4. K(RN) is the subgroup of pointsϕN(p) = (x1+· · ·+xN, x1−x2, . . . , x1−
xN) ∈ X×· · ·N×X such that: p = (x1, . . . , xN) ∈ XNm×· · ·N×XNmandx1+· · ·+xN ∈
Xm.

In particular,K(RN) has subgroups isomorphic toXN × · · ·N ×XN given by

Xm × N· · · ×Xm ↪→ K(RN), (x1, . . . , xN)→ (x1, . . . , xN)

(with respect to the natural immersionXm = N ·XNm ⊂ XmN) and

XN × N−2· · · ×XN ↪→ K(RN) ↪→ X× N· · · ×X,
(x2, . . . , xN−1)→ (0,−x2, . . . ,−xN−1, x2 + · · · + xN−1).
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Proof. Let X̂ = Pic0(X) be the dual Abelian variety. From the exact sequence

0 → XN
∆→X× N· · · ×XϕN→X× N· · · ×X→ 0,

one deduces the existence of the following dual exact sequence

0 → X̂N
∆→X̂× N· · · × X̂ϕ

∗
N→X̂× N· · · × X̂→ 0,

which means that given a pointp = (x1, . . . , xN) ∈ K(MN), one has

T ∗
φN(p)

RN ⊗R⊗−1
N � p∗

1M ⊗ · · · ⊗ p∗
NM

for a certain invertible sheafM of degree zero onX. By restricting this equality toX ×
{e} × · · · {e} we computeM and obtain the following isomorphism:

T ∗
φN(p)

RN ⊗R⊗−1
N � p∗

1(T
∗
x1+···+xNL⊗ L⊗−1)⊗ · · · ⊗ p∗

N(T
∗
x1+···+xNL⊗ L⊗−1).

Then,T ∗
φN(p)

RN � RN if and only if x1 + · · ·+ xN ∈ Xm. The rest of the theorem follows
easily from this result. �

Remark 2.5. We have constructed two subgroups,Xm×· · ·N×Xm andXN×· · ·N−2×XN
of K(RN). Thus if(m,N) = 1, a general element ofK(RN) has the form

(y1, y2 − x2, . . . , yN−1 − xN−1, yN + x2 + · · · + xN−1),

where(y1, . . . , yN) ∈ XNm and(x2, . . . , xN−1 ∈ XN−2
N ).

Let us fix compatible theta-structures[2] onL andL⊗N . These theta-structures induce
compatible theta-structures onRN andMN and decompositions

K(L) � A(L)× B(L), A(L) � (Z/mZ)g, K(L⊗N) � A(L⊗N)× B(L⊗N),
A(L⊗N) � (Z/mNZ)g, K(MN) � A(L⊗N)N × B(L⊗N)N,
K(RN) � A(RN)× B(RN),

whereB(RN) ⊂ B(L⊗N)N , and byTheorem 2.4one has

B(L)N ⊂ B(RN), m · B(L⊗N)N−2 ⊂ B(RN), B(L)N = N · B(L⊗N)N

in such a way thatB(RN) is the subgroup ofB(L⊗N)N generated bym · B(L⊗N)N−2 and
N · B(L⊗N)N .

We have natural isomorphisms[2]

H0(X,L) = Vm = {functionsB(L)→ C},
H0(X,L⊗N) = VNm = {functionsB(L⊗N)→ C}.
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For eachd ∈ B(L), let δd be the global section ofL defined by the characteristic function
of d, and for eachb ∈ B(L⊗N) let δb be the corresponding global section ofL⊗N .

Observe thatH0(Z,RN) is aC-vector space of dimensionN(N−2)gmNg andH0(Z,MN)

is aC-vector space of dimensionNNgmNg. The following result give us an explicit descrip-
tion of the homomorphismϕ∗

N : H0(Z,RN)→ H0(Z,MN).

Theorem 2.6. Let us assume that L andL⊗N have compatible theta-structures satisfying
the above conditions. For eachd ∈ B(RN) one has

ϕ∗
N(δd) = λ

∑
b∈B(MN)

f(b)=d

δd,

whereλ ∈ C is a constant which we will assume to be equal to1.

Proof. This follows from the isogeny theorem[1,3]. �

This result allow us to give more explicit expressions forϕ∗
N .

Givend = (d1, . . . , dn) ∈ N · B(L⊗N)N = [(Z/mZ)g]N ⊂ B(RN), let us denote byδd
the element

δd = δd1 ⊗ · · · ⊗ δdN

 ⊗
i>j

j≥2

s∗ij δdi−dj

 ∈ H0(Z,RN),

and for eachh = (0,−h2, . . . ,−hN−1, h2 + · · · + hN−1) ∈ [(Z/NZ)g]N−2 ⊂ B(RN) we
denote byδh the corresponding global section ofRN .

With these notations one has the following proposition.

Proposition 2.7.

1. ϕ∗
N(δd)= θ[d1](x1 + · · · + xN)

∏
j≥2

θ[dj](x1 − xj)
∏
i>j

j≥2

θ[di − dj](xi − xj)

= λ
∑

bi∈B(L⊗N)
b1+···+bN=d1
b1−b2=d2

...
b1−bN=dN

θ[b1](x1)θ[b2](x2) · · · θ[bN ](xN),

θ[bi](xi) being the global section ofL⊗N defined byδbi (in the ith component ofXN ) and
θ[di](z) the global section of L defined byδdi .
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2. ϕ∗
N(δh)= θh(x1 + · · · + xN, x1 − x2, . . . , x1 − xN)

= λ
∑

bi∈B(L⊗N)
b1+···+bN=0
b1−b2=−h2

...
b1−bN−1=−hN−1

b1−bN=h2+···+hN−1

θ[b1](x1)θ[b2](x2) · · · θ[bN ](xN)

= λ
∑

(b1,...,bN)

θ[b1](x1)θ[b2 + h2](x2) · · · θ[bN1 + hN−1]

× (xN−1)θ[bN − h2 − · · · − hN−1](xN),

where(b1, . . . , bN) ∈ ker(B(MN)) and in both formulaeλ is a constant independent of d
and h.

Proof. This follows easily fromTheorem 2.6and the description ofK(RN). �

Remark 2.8. In the case(m,N) = 1, a general element ofB(RN) takes the form

d = (d1, d2 − h2, . . . , dN−1 − hN−1, dN + h2 + · · · + hN−1),

where(d1, . . . , dN) ∈ B(L)N and(h2, . . . , hN−1) ∈ [(Z/NZ)g]N−2, and the general addi-
tion formula is

ϕ∗
N(δd)= θh(x1 + · · · + xN, x1 − x2, . . . , x1 − xN)

= λ
∑

bi∈B(L⊗N)
b1+···+bN=d1
b1−b2=d2−h2

...
b1−bN−1=dN−1−hN−1v

b1−bN=dN+h2+···+hN−1

θ[b1](x1)θ[b2](x2) · · · θ[bN ](xN).

Remark 2.9. We have explicitly computed the homomorphism of vector spacesϕ∗
N :

H0(Z,RN) → H0(Z,MN). If we wish to computeξ∗N : H0(Xr,L) → H0(Z,MN), let
us note that we have the commutative diagram

and we have

K(L) � Xrm, K(L) ∩ Y ⊆ K(L|Y ) � K(RN), K(L) ∩ Y � Xm × N· · · ×Xm.
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From these identities one can easily prove that the vector subspaceξ∗NH
0(Xr,L) ⊆

H0(Z,MN) can be identified with the subspace generated by the global sections{ϕ∗
N(δd)}

defined in 2.7(a).

3. Vector spaces of higher order odd theta functions

We shall apply the results of the first section to compute some vector spaces of theta
functions which are relevant in the study of the fractional quantum Hall effect (for a similar
discussion for elliptic curves, see[4]).

Following the same notations as in the previous section, let us set an invertible sheaf
Lm = OX(mΘ) on the principally polarized Abelian variety(X,Θ) of dimensiong.

Let us assume thatk = mNand letLk be the invertible sheafOX(kΘ); onX×· · ·r×X = Z
we consider the invertible sheaf

MN = p∗
1Lk ⊗ · · · ⊗ P∗

NLk � p∗
1L

⊗N
k ⊗ · · · ⊗ P∗

NL
⊗N
k .

Let us define the vector subspaceEk(N) ⊂ H0(Z,MN) by the following conditions:

s ∈ Ek(N)⇔

s is invariant with respect to the action of theN-torsion subgroup
∆(XN) ⊂ Z and is odd with respect to the permutations
acting onH0(Z,MN) = H0(X,Lk)⊗ · · · ⊗H0(X,Lk).

Let us setVm = H0(X,Lm) andVk = H0(X,Lk). By the very definition, one has that

Ek(N) =
N∧
Vk ∩ Im ϕ∗

N ⊂ Vk ⊗ N· · · ⊗ Vk,

whereϕ∗
N : H0(Z,RN)→ H0(Z,MN) = Vk⊗· · ·N ⊗Vk is the addition homomorphism

defined inSection 6.
Note that the factorizationϕ∗

N = π1,...,N ◦ ξN implies that

E0
k(N) =

N∧
Vk ∩ Im ξ∗N ⊆ Ek(N) ⊆ V⊗N

k .

LetE±
i ⊂ H0(Z,RN)be the subspaces of eigenvectors of the automorphism onH0(Z,RN)

induced byσi : XN → XN, σi(x1, . . . , xN) = (x1, . . . ,−xi, . . . , xN).

Proposition 3.1. There exists a natural isomorphism

Ek(N) � ϕ∗
NH

0(Z,RN)−.

H0(Z,RN)− being the vector subspace ofH0(Z,RN) defined as the intersection of the
vector subspacesE−

i with i > 1.

Proof. This is easy from the equalityEk(N) =
∧N

Vk ∩ Im ϕ∗
N . �

We can give a more explicit description of the subspaceE0
k(N).
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From Remark 2.9, it follows that Imξ∗N is the vector subspace ofH0(Z,RN) described
in Proposition 2.7.

LetV±
m be the subspaces of eigenvectors ofVm with respect to the action of the involution

[−1]X : X→ X([−1]X(x) = −x). Then, we have the following proposition.

Proposition 3.2.

E0
k(N) = ϕ∗

N(Vm ⊗ V−
m ⊗ N−1· · · ⊗ V−

m ).

Proof. One has only to observe that Imξ∗N is naturally identified withVm ⊗ · · ·N
⊗ Vm. �

In our interpretation of the FQHE, the vector subspaceE0
k(N) is the space of wave

functions of a system ofN electrons.

4. Poincaré bundles and Fourier–Mukai transforms

Let (X,Θ) be a p.p.a.v. of dimensiong andX̂ its dual Abelian variety. LetP be a Poincaré
bundle onX× X̂; P is the line bundle onX× X̂ given by the universal property of̂X.

Given an invertible sheafLm � OX(mΘ) on X (with m > 0), we can construct the
invertible sheaf onX× X̂:

Lm = π∗
XLm ⊗ P,

whereπX : X× X̂→ X andπ
X̂

: X× X̂→ X̂ are the natural projections.
The Fourier–Mukai transform ofLm is (see[5,6] for details)

S(Lm) = πX̂∗(π
∗
XL⊗ P) = π

X̂∗Lm.

It is well known thatS(Lm) is a rankmg vector bundle on̂X.
We can interpretLm as the family of line bundles overX, parameterized bŷX, which are

algebraically equivalent toLm.
If we wish to generalize the results ofSection 1to the case of a “variable line bundle”

Lm, we must perform the base changeX× X̂→ X̂ and replaceLm byLm.
We can then define onZ × X̂ the following line bundles:

M̃N = M̄∗Lm ⊗
(

⊗
i<j
s̄∗ijLm

)
, R̃N = (

p̄∗
1Lm ⊗ · · · ⊗ p̄∗

NLm
) ⊗

 ⊗
i>j

j≥2

s̄∗ijLm

 ,
whereM̄ ands̄ij are the morphismsZ×X̂→ X×X̂defined by:M̄ = M×Id

X̂
, s̄ij = sij ×Id

X̂

andp̄i : Z × X̂→ X× X̂ are the natural projections.
Definingϕ̄N : Z × X̂→ Z × X̂ asϕ̄N = ϕN × Id

X̂
, we have that

ϕ̄∗
NR̃N � M̃N,
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and Corollary 2.2 implies that

ϕ̄∗
NR̃N � M̃N � p̄∗

1L
⊗N
m ⊗ · · · ⊗ p̄∗

NL
⊗N
m ⊗ π∗

X̂
F

for some invertible sheafF on X̂.
Bearing in mind the applications to the FQHE, we are mainly interested in the bundles

WN(Lm) = πX̂∗(M
∗Lm) = πX̂∗(M̄

∗(π∗
XLm ⊗ P)),

which describe the dynamics of the center-of-mass.
Our main result on the structure ofWN(Lm) is as follows.

Theorem 4.1. For everyN > 0 andm > 0,WN(Lm) are vector bundles over̂X of rank
mg. These vector bundles are semi-stable with respect to the p.p.Θ̂ induced byΘ on X̂.
Moreover, for everyN ≥ 2, there exist natural isomorphismsWN(Lm)

∼→WN−1(Lm).

Proof. Proof of the existence of isomorphismsWN(Lm)
∼→WN−1(Lm) is the same as the

proof given in the case of elliptic curves.
Therefore, the proof of the theorem is reduced to the case ofW1(Lm) which is precisely

the Fourier–Mukai transform ofLm, which is well known to be a vector bundle of rankmg

(for m > 0).
We only have to prove the semi-stability ofW1(Lm) with respect toΘ̂.
Let us compute the slope ofW1(Lm): we consider the isogenyϕLm : X → X̂ of degree

m2g defined by

ϕLm = T ∗
x Lm ⊗ L⊗−1

m ,

Tx : X→ X being the translation byx. It is known[7] that

ϕ∗
Lm
W1(Lm) � H0(X,Lm)⊗ L⊗−1

m .

Let us setOX(D) = detW1(Lm); one has

ϕ∗(D · Θ̂g−1) = deg(ϕ)deg(D) = m2g deg(D),

and

ϕ∗(D · Θ̂g−1) = ϕ∗D · (ϕ∗Θ̂)g−1 = (−mg+1Θ)(m2Θ)g−1 = −m3g−1g! .

Then, deg(D) = −mg−1g! :

µ(W1(Lm)) = degW1(Lm)

rkW1(Lm)
= −g!

m
.

Let us recall that from the computations of Lange and Birkenhake[8] one easily deduces
that given an invertible sheafM onX̂, one has thatc1(M) · Θ̂g−1 = g! · c for some integer
c. Thus, in the definition of semi-stability on̂X, with respect to the polarization̂Θ, we can
replace the degreec1(M) · Θ̂g−1, of an invertible sheafM, by the reduced degree

r deg(M) = c1(M) · Θ̂g−1

g!
,
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and the reduced slope

µr(M) = c1(M) · Θ̂g−1

g! · rkM
.

Let F ⊆ W1(Lm) be a subbundle of rankr < mg and reduced degreer deg(F) = d. One
has to show that

µr(F) = d

r
≤ µr (W1(Lm)) = − 1

m
.

But it is known that to prove the semi-stability condition forW1(Lm) it suffices to prove
that it is satisfied by the subbundles of rk= 1; that is, we can assume thatr = 1. In this
case, the inequality is equivalent tod < 0.

Let us take the pullback ofF ⊆ W1(Lm) with respect to the isogenyϕLm

ϕ∗
Lm
F ⊆ ϕLm∗W1(Lm) � H0(X,Lm)⊗ L⊗−1

m ,

andr degϕ∗
Lm
F = m2gd ≤ r degL⊗−1

m = −m < 0. Then, one has thatd < 0. �

5. Fractional quantum Hall states in multi-layer two-dimensional electron systems

For applications to the FQH effect, we shall apply the theory developed in previous
sections to the following situation.

Let us consider the formsE = C/Z ⊕ τZ defined byτ ∈ H1 (upper half-plane) and let
us denote bye ∈ E the origin of the group law ofE. The natural polarization onE is given
by the invertible sheafOE(e).

For any positive integerg ∈ Z, let us denote byXg the Abelian variety

Xg = E× g· · · × E.
LetXg →qi E be the natural projection into theith factor. One can define a p.p.,Θ, onXg
as follows:

OX(Θ) =
g⊗
i=1
q∗iOE(e).

LetK be a symmetric, positive, integer-valuedg×gmatrix. This matrix defines an isogeny

K : Eg = X→ Eg = X.
One can define a line bundleLk onX by

Lk = K∗OX(Θ).

We can apply the results ofSections 1 and 2to this sheaf.
Let N > 0 be an integer number,r = (N(N − 1)/2) + 1, andξN, ϕN the morphisms

defined inSection 1

ξN : X× N· · · ×X � EgN → X× r· · · ×X, ϕN : X× N· · · ×X→ X× N· · · ×X.
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OnZ = XN , one has the sheaf

RN = (p∗
1LK ⊗ · · · ⊗ p∗

NLK)⊗

 ⊗
i>j

j≥2

s∗ijLK

 ,
and isomorphisms

ξ∗N

(
r⊗
i=1
p∗
i LK

)
� ϕ∗

NRN � N⊗
i=1
p∗
i L

⊗N
K �MN(K).

Analogous toSection 2, for each matrixK we can define the vector subspaceEK(N) ⊂
H0(Z,MN(K)) which will be identified with the Hilbert space of our problem

s ∈ EK(N)⇔

s is invariant with respect to the action of the subgroup
∆(XN) ⊂ Z and is odd with respect to the permutations
acting onH0(Z,MN(K))=H0(X,L⊗N

K )⊗ · · · ⊗H0(X,L⊗N
K ).

Also one has that

EK(N) =
N∧
H0(X,L⊗N

K ) ∩ Im ϕ∗
N.

Analogous toSection 2we can also define the subspaceE0
K(N) =

∧N
H0(X,L⊗N

K )∩Im ξ∗k .
Let us denote a point ofXN by (x1, . . . , xN) andxi = (ti1, . . . , tig) ∈ Eg = X.
The explicit computations can be performed along the lines of Mumford[2,3].
Note that the kernel of the isogenyK : X→ X can be identified with the finite subgroup

XK � Z
g/KZ

g × Z
g/K̂Z

g.

The order of this group is|XK| = |detK|2 andH0(X,LK) is aC-vector space of dimension
|detK|. Obviously, one has

K(LK) = XK ⊂ K(L⊗N
K ), N ·K(L⊗N

K ) = K(LK).

Let us setV = H0(X,LK) andVK = H0(X,L⊗N
K ). One has the analogous results of those

proved inSections 2 and 3and

EK(N) = ϕ∗
NH

0(Z,RN)−, E0
K(N) = ϕ∗

N(V ⊗ V− ⊗ N−1· · · ⊗ V−).

Moreover, givend = (d1, . . . , dN) ∈ N · B(LK)N = [Zg/KZ
g]N ⊆ B(RN), let us denote

by δd the element

δd = δd1 ⊗ · · · ⊗ δdN ⊗

 ⊗
i>j

j≥2

s∗ij δdi−dj

 ∈ H0(Z,RN).
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It follows that the vector subspaceE0
K(N) is generated by the sectionsϕ∗

N(δd) and one has
the identity

ϕ∗
N(δd)= θ[d1](x1 + · · · + xN)

∏
j≥2

θ[dj](x1 − xj)
∏
i>j

j≥2

θ[di − dj](xi − xj)

= λ
∑

b1+···+bN=d1
b1−b2=d2

...
b1−bN=dN

θ[b1](x1)θ[b2](x2) · · · θ[bN ](xN), (1)

where(x1, . . . , xN) ∈ X× · · ·N ×X = EgN, that is,xi = (zi1, . . . , zig) ∈ Eg.
Observe that

Z
g/KZ

g � Z/n1Z ⊕ · · · ⊕ Z/ngZ

for some integersn1, . . . , ng such that detK = n1, . . . , ng.
Then, in the above statementsd1, . . . , dN are elements of the groupZ/n1Z⊕· · ·⊕Z/ngZ

(once one has fixed the corresponding theta-structures).

6. Filling factors and Hall conductivity

In a multi-layer many-electron system where the fractional quantum Hall effect is ob-
served, the ground state is a quantum fluid with several possible topological orders; see[9].
The different phases are characterized by theg× g matrix

K =


2p+ 1 2p · · · 2p

2p 2p+ 1 · · · 2p
...

...
. . .

...

2p 2p · · · 2p+ 1

 ,

wherep is an integer greater than zero andg the number of layers.
The ground state wave function

ψ̃ =
N∏
i,j=1
i<j

[
g∏
a=1

(zai − zaj)2p+1
∏
a<b

(zai − zbj)2p
]

exp

[
−

g∑
a=1

N∑
i=1

|zai |2
]

is the generalization of the Laughlin state to the case in which each layer is isomorphic
to C; here,zai is theith particle position in theath layer, and we assume that there areN
particles per layer, so that the total number of particles isNT = gN.

We focus on this problem when each electron moves on a torus; the one-particle config-
uration space is the elliptic curveE = C/Z + τZ of the previous sections. The modular
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parameterL2 eiθ/L1 encodes the periodicities of the basic lattice, which is the same for every
layer. A constant magnetic fieldB allows for a well-behaved quantum system, compatible
with the lattice and the order “meant” by the matrixK, if and only if

K1 =


(2p+ 1)N 2pN · · · 2pN

2p 2p+ 1 · · · 2p
...

...
. . .

...

2p 2p · · · 2p+ 1

 ,
eB

�c
L2

1 = 2π|detK1|
Im τ

.

Here,e, � andc are, respectively, the electron charge, the Planck constant and the speed of
light in vacuum. The quantum space of one-particle states is the space of sections of the
line bundleLK1 = K∗

1θXg(Θ) and the first Landau level corresponds to the subspace of
holomorphic sectionsH0(Xg, LK1).

There is a many-electron wave function proposed by Haldane and Rezayi[10,11]as the
ground state for the quantum Hall fluid in a periodic lattice. Both the HR wave function and
its generalization to a multi-layer are of Laughlin type and the framework for the mathe-
matical understanding of such complex quantum states is provided by the developments set
forth before in this paper. We start by noticing that the isomorphism established at the end
of Section 4now reads

Z
g/KZ

g � Z/(2gp+ 1)Z ⊕ 1 ⊕ 1 ⊕ · · · ⊕ 1,

i.e.n1 = (2gp+ 1), n2 = n3 = · · · = ng = 1 because these are the eigenvalues of theK

matrix.
The center-of-mass dynamics and the relative motion of each pair of particles produce

contributions that factorize in the ground state wave function. In a basis inXg in whichK
is diagonal:

1. The center-of-mass wave function is a theta function ofg variables that we write follow-
ing the conventions of Ref.[12] in order to translate the developments of the previous
sections to the notation used in the physics literature:

FCM( �X) = Θ
[
d1K

−1
D �e1
�0

]
(KD �X|KDτ), �X = �x1 + �x2 + · · · + �xN,

�X is the CM coordinate,KD is a diagonal matrix such that detKD = detK (we have
chosenKD11 = 2gp+ 1) and the vector ofg components�e1 is (1,0, . . . ,0).

This expression for the center-of-mass wave function is exactly the same asθ[d1](x1+
x2 + · · · + xN) in the previous section and, undoing the diagonalization, one obtains

FCM(�Z) = Θ
[
K−1�α

�0

]
(K �Z|Kτ),

where�Z = �z1 + �z2 + · · · + �zN is the CM coordinate in a basis ofXg, whereK is not
diagonal, and�α ∈ Z

g/KZ
g. This is the form in which it appears in the physics literature.



318 J.M. Guilarte, J.M.M. Porras / Journal of Geometry and Physics 47 (2003) 303–322

2. The factor in the ground state wave function due to relative motion has the form: if
�xij = �xi − �xj,

Fr(�xij ) =
∏
i<j

Θ−

 d−
ij K

−1
D �e1
�0

 (KD�xij |KDτ),

d−
ij = d−

i − d−
j , i ≥ 2, dij = d−

j , i = 1, d−
ij = 1,2, . . . ,gp.

Fermi statistics requires the use of anti-symmetric functions in�xij �→ −�xij

Θ−

 d−
ij K

−1
D �e1
�0

 (KD�xij |KDτ)

= 1

2

Θ
 d−

ij K
−1
D �e1
�0

 (KD�xij |KDτ)−Θ
 −d−

ij K
−1
D �e1

�0

 (KD�xij |KDτ)
 .

Nevertheless, the ground state wave function

ψ = FCM( �X)Fr(�xij )exp

{
−1

4

∑
i

(Im �xi)(Im �xi)
}
,

apart from the non-analytic exponential factor, consists of terms of the form of the
left-hand member of formula(1).

Therefore,ψ can also be expressed as a product of theta functions in the�xi variables
with characteristicsbi ∈ Z/(2gp+ 1)Z ⊕ 1 ⊕ 1 ⊕ · · · ⊕ 1 related to theKD matrix.

In the physics of the quantum Hall effect, the concept of the filling factor plays a
central role; if the magnetic field is strong enough to provide more states in the first
Landau level than electrons, it is defined as

f = number of particles

number of states in the first LL
,

and the Hall conductivity is studied as a function off .
If the number of states in the first LL is a finite number, dimH0(Xg, LK1) = det(K1)

in our case, thenf is

fHR = NT

detK1
= g

2gp+ 1
.

Different integersg, and hence different values offHR, give rise to a hierarchy of ex-
perimentally observed topological orders: associated with eachf of this form there are
quantum fluids that arise as ground states of the fractional quantum Hall effect without
periodic boundary conditions.

What we have shown by proving the generalized addition formulae for Abelian vari-
eties is that the fractional quantum Hall states in multi-layer two-dimensional electron
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systems are compatible with periodic lattices. Only the existence of such addition for-
mulae makes it possible to claim that the generalized Haldane–Rezayi wave function
impliesfHR = g/(2gp+ 1).

In fact, a further development remains to be made in order to make contact with the
HR ground state. We remark that there is a linear combination such that

gp∑
d−ij =1

c[d−
ij ]Θ−

 d−
ij K

−1
D �e1
�0

 (KD �Xij |KDτ)

= Θ2gp+1

 1
2
1
2

 (x1
i − x1

j |τ)
g∏
a=2

Θ

 1
2
1
2

 (xai − xaj |τ),

appearing in the right-hand member odd theta functions of one variable. Undoing the
diagonalization ofK, one easily checks that

g∏
a=1

Θ2p+1

 1
2
1
2

 (zai − zaj |τ)
∏
a<b

Θ2p

 1
2
1
2

 (zai − zaj |τ)

� Θ2gp+1

 1
2
1
2

 (x1
i − x1

j |τ)
g∏
a=2

Θ

 1
2
1
2

 (xai − xaj |τ)

in such a way that the HR wave function can be traced back to the aboveψ.
The generalized addition formulae are valid for any Abelian varietyXg = Cg/(Zg ⊕

ΩZg), withΩ a matrix in the Siegel upper half-space of rankg in Hg. In the application
to the quantum Hall effect, we have restricted ourselves to the caseXg = Eg, i.e.Ω =
τIg×g. There is no difficulty in extending the analysis to anyΩ ∈ Hg that physically
corresponds to taking into account different periodicities for different layers and a tunnel
effect of weak amplitude between layers, a situation also considered by condensed matter
physicists, see[13]. It is also convenient to make a brief comment on the second type of
addition formulas;Proposition 2.7, from a physical point of view. Mathematically, the
origin of such addition formulas is the freedom of choosing the isogenyϕN : Z → Z:
there are different projections fromXg × · · ·r × Xg to Z = Xg × · · ·N × Xg (r =
[N(N − 1)/2] + 1). Another choice ofπ1,...,N , for instance, would lead one to define

ϕ′
N(x1, . . . , xN) = (x1 + x2 + · · · + xN, x2 − x1, x2 − x3, . . . , x2 − xN),

i.e. it would singularize relative coordinates with respect to the second particle. In quan-
tum mechanics particles are indistinguishable and thus this possibility is physically
equivalent to choosingϕN based on the first particle coordinate. For this reason the
wave functions invariant under the second subgroup ofK(RN) do not enter in physical
arguments, and the orderingi < j is chosen as the most natural one.

Further knowledge of the implications of the nature of the HR ground state wave
function can be obtained by means of a gedanken experiment, see[14]: magnetic fluxes
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are induced by two solenoids per layer connected to the Hall device in such a way that
they are compatible with the electrons if

Re�φ ∈
[
�0, �c

e
�u
]
, Im �φ ∈

[
�0, �c

e
�u
]
,

according to the Aharanov–Bohm effect. Here,�φ is a complexg vector which encodes
the solenoid fluxes and�u = (1,1, . . . ,1) is a real constantg vector. The generalized HR
states are modified to

ψd1[�φ] = Fd1
CM[�φ; �X]Fr[ �Xij ] exp

{
−1

4

∑
i

[(Im �Xi)t Im �Xi]
}
,

F
d1
CM[�φ; �X] = Θ

 d1K
−1
D �e1 + �φ1

�φ2

 (KD �Xij |KDτ),

where �φ1 = (e/�c)Re�φ and �φ2 = (e/�c) Im �φ. The relative motion is not affected
but the contribution of the center-of-mass dynamics to the ground state is modified by
including the solenoid fluxes as characteristics of the theta function.

Mathematically, one must interpret�φas points in the Jacobian̂Xg ofXg and we proceed
to identify the bundle whereψd1[�φ] is defined as a section, using the developments of
Section 3. In fact, only the replacement ofLm by LK is necessary. We thus start by
constructing the invertible sheaf

LK = π∗
XLK ⊗ P,

a family of line bundles overX parameterized bŷX, and defining the Fourier–Mukai
transform ofLK

S(LK) = πX̂∗(π
∗
XLK ⊗ P) = π

X̂∗LK,

S(LK) is a vector bundle over̂X of rank (detK)g whose fibers are vector spaces of
dimension(detK)g whose bases are provided by the basis ofH0(X̂, LK)|

x̂0∈X̂ . Taking
this into account, one easily recognizes that

sd1 = Fd1
CM[ �ψ; �X]Fr[�xij ]

is a holomorphic section in the bundle

M̃
K

N = M̄∗LK ⊗
(

⊗
i<j
s̄∗ijLK

)
defined in perfect analogy with the bundlẽMN of Section 3: one merely replacesLm
byLK.

We now focus on the center-of-mass dynamics. Taking direct image amounts to inte-
grate over the variables in the other factors and we find

S
d1
CM = Fd1

CM[�φ] =
∫
X

d volX F
d1
CM[�φ; �X],
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which determines the contribution of the solenoid fluxes to the CM ground state wave
function; this is a holomorphic section in the Fourier–Mukai transform of the bundle
M̄∗LK

WN(LK) = πX̂∗(M̄
∗LK) = πX̂∗(M̄

∗(π∗
XLK ⊗ P)).

FromSection 3we know thatWN(LK) � WN−1(LK) and the slope and reduced slope
ofW1(LK) are given by

µ(W1(LK)) = −g(detK)g−1g!

(detK)g
= − gg!

detK
, µr(W1(LK)) = − g

detK
.

There is a novelty: the factorg appears due to the freedom of choosing 2gp+ 1 as any
of theg eigenvalues ofK.

The Hall conductivity of the system is expressed in perturbation theory by the Kubo–
Thouless formula[12]

σH = i

2π

ge2

r�

r∑
d1=1

[〈 �∇1ψ
d1| �∇2ψ

d1〉 − 〈 �∇2ψ
d1| �∇1ψ

d1〉],

wherer = detK, �∇a = ∂/∂�φa and〈|〉 defines theL2-norm

〈f |g〉 =
∫
X⊗N

d volX⊗Nf ∗(�x1, �x2, . . . , �xN)g(�x1, �x2, . . . , �xN).

This formula can be interpreted as follows: from the sectionψd1, we obtain a connection,
for anyd1,

ωd1 = −2 Im〈ψd1| �∇2ψ
d1〉 d�φ2

in a certain line bundle over̂X. The curvature

Rωd1 = 2π d�φ1 ∧ d�φ2

is constant on̂X and thereforeσH is equal to its average value〈σH〉

〈σH〉 = i

2π

ge2

r�

r∑
d1=1

[〈 �∇1ψ
d1| �∇2ψ

d1〉 − 〈 �∇2ψ
d1| �∇1ψ

d1〉] = g

2gp+ 1
.

The bundle is thereforeW1(LK) and the Hall conductivity is a topological invariant, the
reduced slope ofW1(LN)

σH = |µr(W1(LK))|.
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